Apply differential uprating to projections of the Sw_amt
variable.
differentially_uprate_wage(wage = 1, from_fy, to_fy, ...)
wage | A numeric vector to be uprated. |
---|---|
from_fy | The financial year contemporaneous to wage, which must be a financial year of an available sample file -- in particular, not after 2016-17. |
to_fy | The target of the uprating. Passed to |
... | Other arguments passed |
The vector wage
differentially uprated to to_fy
.
See vignette("differential-uprating")
.
ws <- c(20e3, 50e3, 100e3) from <- "2013-14" to <- "2016-17" differentially_uprate_wage(ws, from, to)#> [1] 21344.88 52855.41 106537.99#> [1] 1.0030237 0.9934975 1.0012715# Use a wage series: if (requireNamespace("taxstats", quietly = TRUE)) { library(data.table) library(taxstats) WageGrowth <- data.table(fy_year = c("2017-18", "2018-19"), r = c(0.0, 0.1)) Wage201314 <- sample_file_1314[["Sw_amt"]] data.table(Wage_201314 = Wage201314, Wage_201819 = differentially_uprate_wage(Wage201314, from_fy = "2013-14", to_fy = "2018-19", wage.series = WageGrowth)) }#> Wage_201314 Wage_201819 #> 1: 4540 5162.758 #> 2: 58734 64644.755 #> 3: 39953 44049.037 #> 4: 112494 125682.640 #> 5: 94213 104828.123 #> --- #> 258770: 24491 27259.671 #> 258771: 47704 52484.350 #> 258772: 46690 51375.532 #> 258773: 5132 5828.638 #> 258774: 49508 54455.791