Apply differential uprating to projections of the Sw_amt variable.

differentially_uprate_wage(wage = 1, from_fy, to_fy, ...)

Arguments

wage

A numeric vector to be uprated.

from_fy

The financial year contemporaneous to wage, which must be a financial year of an available sample file -- in particular, not after 2016-17.

to_fy

The target of the uprating. Passed to wage_inflator.

...

Other arguments passed wage_inflator.

Value

The vector wage differentially uprated to to_fy.

Details

See vignette("differential-uprating").

Examples

ws <- c(20e3, 50e3, 100e3) from <- "2013-14" to <- "2016-17" differentially_uprate_wage(ws, from, to)
#> [1] 21344.88 52855.41 106537.99
differentially_uprate_wage(ws, from, to) / wage_inflator(ws, from, to)
#> [1] 1.0030237 0.9934975 1.0012715
# Use a wage series: if (requireNamespace("taxstats", quietly = TRUE)) { library(data.table) library(taxstats) WageGrowth <- data.table(fy_year = c("2017-18", "2018-19"), r = c(0.0, 0.1)) Wage201314 <- sample_file_1314[["Sw_amt"]] data.table(Wage_201314 = Wage201314, Wage_201819 = differentially_uprate_wage(Wage201314, from_fy = "2013-14", to_fy = "2018-19", wage.series = WageGrowth)) }
#> Wage_201314 Wage_201819 #> 1: 4540 5162.758 #> 2: 58734 64644.755 #> 3: 39953 44049.037 #> 4: 112494 125682.640 #> 5: 94213 104828.123 #> --- #> 258770: 24491 27259.671 #> 258771: 47704 52484.350 #> 258772: 46690 51375.532 #> 258773: 5132 5828.638 #> 258774: 49508 54455.791